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SHOCK-WAVE METHOD OF GENERATING MEGAGAUSS
MAGNETIC FIELDS

E. I. Bichenkov, 8. D. Gilev, UDC 537.639
A. M. Ryabchun, and A. M. Trubachev

Relatively recently, we and Japanese investigators proposed a new method of generating superstrong mag-
netic fields through the compression of magnetic flux by a system of shock waves (SW) converging in a sub-
stance capable of converting from a nonconducting to a conducting state during compression {1-4]. In the pre-
sent paper we study the possibilities of generators using this principle.

1. Compression of Magnetic Flux in a Perfectly Packable Substance with an

Unlimited Electrical Conductivity Behind the SW Front

A fundamental property of the method of magnetic cumulation under consideration consists in the unavoid-
able losses of a certain (most often considerable) fraction of the magnetic flux. These losses are connected
with the compressibility of the substance and occur even when the electrical conductivity of the material in the
conducting state is unlimited. The mechanism of this kind of loss is simplest to understand on the model of a
porous substance with an initial density p,, which acquires electrical conductivity upon compression to a den-
sity p. In this case the magnetic flux initially penetrating a nonconducting granule of the substance remains
frozen into the granule material after the phase transition, and only that part of the flux which was initially in
the pores between granules of the substance is displaced into the region filled with uncompressed and non-
eonducting substance. If we designate the change in the area occupied sirictly by particles of the substance as
dSq and consider that in compression this quantity is negative, and we also assume that the sizes of individual
particles ahead of the SW front are small enough to establish equilibrium between the fields in the pores and
the particles, then the equation for the flux losses from the compression region can he written in the form

d® = BdS,. (1.1)
Using the equation of conservation of the mass flux at the SW, '
0odS = pdS,, (1.2)

we rewrite (1.1) for a uniform field:
_ 5% o
dd = -5 ds. {1.3)

There are many reasons to assume that in the compression of metal powders coated with a film of non-
conducting oxides, electrical conduction develops when a certain density Pe is reached, which is lower than the
density of the crystalline state of the substance, of course, but which can prove to be a constant quantity for the
same material and for initial grains of about the same shape. Under such an assumption, Eq. {1.3) is easily
integrated and yields relations for the flux ’

=2 _ (5 \Polee
= =(5)
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and for the field

B B _ (i)l—polpc
B, 3 (1.4)

In this case, (1.2) in the kinematic aspect leads to
po/Pc =1— uc/D= 1 — O,

while the assumption made means that the transition of the substance to the conducting state occurs at that
phase of compression in the SW front when the ratio of the mass velocity u of the substance to the wave velocity
D proves to equal a certain constant value «. It is clear that if the SW is strong enough and compresses the
substance above the density p o the field frozen into the substance will increase in proportion to the degree of
compression, but this says practically nothing about the field ahead of the SW front.

Individual specific features of the shock-wave compression of magnetic flux can be analyzed on the ex-
ample of the problem of the compression of a perfectly packable substance by a cylindrical liner moving at a
velocity u,. We assume that the substance has a density p; ahead of the SW front, while behind the front it has
a density p which does not depend on the intensity of the SW. At the initial time the substance occupies a cyl-
indrical region with a radius Ry and a field By in if. So as not to complicate the problem, we assume that the
liner compressing the substance is thin with 2 mass M per unit length along the axis, The formulated problem
is characterized by the set of dimensionless parameters

a=%_=1—p0/p; (1.5)
B o
Do = kTl ;u—(z)’ (1-6)
M
m = "R . (1.7)

Instead of pgy of (1.6), in a number of cases it is more convenient to introduce the initial magnetic energy, nor-
malized to the kinetic energy of the liner:

B

2 .
o p2 2 _ D
€, = gl =

s
m

The presumed incompressibility of the substance after the transition to the conducting state and the known
law of variation (1.4) of the magnetic field frozen into the substance allow one to calculate the energy of the
magnetic field during compression,

80'

(= aati), 0.9

e ==

where x =r/R,; r is the position of the SW front moving toward the axis. An analysis of this formula shows
that for highly compressible substances (p,/p << 1, @ ~ 1) the magnetic energy grows without limit as the wave
converges toward the axis. Strictly speaking, for this it is sufficient that « > 1/2. For « =1/2, from (1.8)
we get e =ey(1 —Inx), i.e., a similar phenomenon is observed. In return, for moderately and poorly compres-
sible substances (¢ < 1/2), the magnetic energy is always finite and

1-a
1—2a’

€—> &
X0

This means that in such a case the SW can arrive at the axis of symmetry, if dissipative processes of the vis-
cous type [5] do not prevent this. ‘

More detailed information about the dynamics of SW cumulation can be obtained by solving the equation

ar m
2—*05——(1—-—‘-)
dy __ 2y g el
dz z

2ap 4
2 m + ﬁ‘a—&‘ (1.9)
In £ +== “ In £ +=
2 = e 2

g

to which the equations of motion of the liner and the medium are reduced. Herey =D?/D% ¢ =R?*/R} = 1 —
a+axtx = r/Rgy; D is the SW velocity; r is the position of the SW front; R is the position of the outer boundary
of the compressed material; the zero index pertains to initial values.
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The change of variables

4 a@p, d 1 .
y—Ti—?ﬂ_x—;; gﬁ m” E_xz
In = + z
reduces (1.9) to
%g'.‘. = (1 — 20) - (4 — 1) (1.10)
where
1 {—o i
U =17 T2a 2 m
ln—g— —l-'zz-
with the initial condition
u (1) =uy = o L for gy,

It is easy to establish that in the region of compression 0 < £ =< 1 there are two singular points of Eq. (1.10}:
¢ =0, 1 =0, with asymptotic behavior u ~ C¢ 1-2€ of the solution in its vicinity, and £ =0, u =1, with asymp-
totic behavior u ~ 1 + C£2%™1, In the case of high compressibility (o > 1/2), the point ¢ =0, u =0 consists of
a pole with trajectories diverging in its vicinity, because of which u —~« andy — 0 as £ — 0, i.e., the fallin,
SW stops and it is reflected from the "magnetic wall" at a finite value of the compression radius x, = (¢ *)1 2,
And the point ¢ =0, u =1 consists of a node with trajectories converging to it in this case, but these solutions
are nonphysical, since for o > 1/2 they correspond to negative values of y = D?/Dj.

For moderate and pcor compressibility (« < 1/2) the situation changes: The point ¢ =0, u =0 becomes
a node to which trajectories contract, while the point £ =0, u =1 is converted into a pole with trajectories di~
verging in its vicinity. This means that for integral curves of the first type cumulation ends with the arrival
of the SW at the axis, while for those of the second type it ends with reflection from the "magnetic wall." To
which of the singular points a solution belongs depends on the initial conditions, while the separation of the so-
Iutions into two types depends on whether or not they intersect the curve

u = Uy (). {1.11)

It is easy to see that if £ =1, u =uy, u; =< u, (1) at the initial time, then the infegral curve of Eq. (1.10) falls
immediately below the critical curve (1.11) and, at the end of compression, arrives at the node §¢ =0, u =90,
i.e., the SW arrives at the axis upon an unlimited increase in velocity. For this it is sufficient that the initial
magnetic energy be small,

<1 — 20— (1 —a)m. (1.12)

On the other hand, if u; = 1, the trajectories u(¢) depart to infinity as £ — £, le., the SW stops at a certain
finite distance from the axis and is reflected, for which it is sufficient to satisfy the condition

ey = (1 — 2a)/a. (1.13)

The estimates (1.12) and (1.13) are useful, but rather coarse. More precise critical values e;k can be found by
a numerical solution of Eq. (1.10) in the segment 6§ = £ =< 1 with the initial condition u(6) =u, (6) for an un-
limited decrease in 6. Calculations of this kind were made numerically, and their results are shown in Fig. 1,
where the dependence ea“(a) is plotted for m =10, 1, and 0.2 (lines 1-3). K e; > ez(’,l< , the SW decelerates and
stops. Otherwise, the compression proceeds up to the axis. In this case the finite electrical conductivity and
compressibility of the now conducting material can be a limitation on the magnitude of the field.

In the case when the energy restrictions prove to be dominant {a high initial magnetic pressure, a light
liner), it is interesting to compare the degree of magnetic field compression attainable (8, ) with the limiting
value B] attainable in classical magnetic cumulation by an incompressible, perfectly conducting liner: Bg] =
1/ey + 1.

Calculations of this kind were made for the problem formulated above, and their results, in the form of
the dependence of the ratio r = 8, / B, on the initial field energy, are shown in Fig. 2a-d for « =0.2, 0.4, 0.6,
and 0.9, respectively, with m =0.2, 1, and 10 (lines 1-3). We note that for a heavy liner (m = 1), the limiting
field is always somewhat higher than in the classical case, while for a light liner the dependence is more com-
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plicated: In a wide range of initial field energy the field strengthening is lower than the classical value, but
with a decrease in e, to the critical value e it increases sharply. This occurs because of a strong decrease
in the stopping radius in comparison with its value in the ideal problem of classical magnetic cumulation. With
an increase in o to ~1 this problem approaches the classical one, and for ¢ =1 changes into it.

2. Compression of Magnetic Flux by a Perfectly Packable Substance with a Finite

Electrical Conductivity in the Compressed State

Choosing the simplest subject for analyzing the influence of finite conductivity, we consider the plane
problem of compression of a magnetic field by two plane SW moving toward each other with a velocity D. At
the initial time the region containing a uniform magnetic field By is filled with a nonconducting substance having
a density p, and a transverse size 2x,. As a result of compression, the density of the substance grows top and
a conductivity ¢ develops in it. For simplicity, we take p and ¢ as coanstants, as well as the SW velocity. Then
the mass velocity u of the substance behind the wave front also proves to be constant. By virtue of the sym-
metry of the problem, we can consider half of the compression region, placing a perfectly conducting plane in
the middle of it. In the frame of reference connected with the SW front, the field in the compressed substance
is determined by the equation

in which the well-known diffusional term, described by the first term on the right side, is supplemented by a
second, convective term, describing the removal of field by the conducting substance moving relative to the
front with a velocity (D — u).

The condition of continuity of the tangential component of the electric field at the SW front (x = 0) leads
to the relation
* 9B 4B
ﬁ‘-ﬁ = (2, —Dt) 5 — uB
The formulated problem is a generalization of the simplest problem of magnetic cumulation between two con-
ducting plane plates [6, 7] and changes into it for u = D.

Normalizing the size to X, the time to the compression time x,/D, and the field to B, and introducing the
magnetic Reynolds number u = 41ran0/c2 and the kinematic compression parameter o, we reduce the problem
of the field in the conductor to the solution of the equation

b

ra .’IJ>O (201)

&b ab
o Pl —eg =
with the condition at the boundary

ab &b
=n{l—t) o —aph, z=0 (2.2)

and the initial condition b(x, 0) =1, x =—1. In the region not yet reached by the SW (t — 1 < x < 0), the field
is uniform and equal to the field b(t) at the boundary of the conductor.

We find that Eq. (2.1) and the assigned initial conditions are satisfied by the expression
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which takes the value b(t) at the boundary x = 0. From the solution (2.3) it is simple to calculate the value of
ob /ax | x=¢ and, after substitution into the condition (2.2), to obtain an integrodifferential equation for the field
ahead of the SW front:

(l—a)'u

BU—02 oLy Ee * ff’i[(b(r)—n o ! ]Vd____

t—1

Bymethods similar to those of {6, 7] we can reduce this equation to the ordinary differential equation

2% 1 3 (1—af 2] )
(i—t)—gt—a=[—;+(—-2-—+d)(1—t)—-——4——p(1—t) th-'*‘

e e ) 2.4
+[__4._a+.<1 o, 4 a)4(2+a)(1_t)]ﬂ_yz,(_1zﬂb+;(t;, (2.4)

dt

where

—?
_a—a?,

. t o p— 2 3
. [ p oo i (1—a) ap(l — o) 1—a
[y =e Vﬂ 1/2(2w % ) T3 erfc( 2 : V“t)'

The initial conditions are determined in the process of derivation of (2.4} and have the form

1, B_, L (L ___3+°°)____°° L =0
b(0) =1, =a, ol t 3 Vi at t=0U. {(2.5)

Integration of Eq. (2.4) is connected with a number of difficulties, chief of which is that the point £ =1, corre~
sponding to the end of compression, is an irregular singular point. The fundamental system of this equation
consists of two solutions that can be represented, at least asymptotically, in the series form

g~ Zc'l’z (t—- t)vk.z V j=1,2, (2.8)
while a third has the form

4
gs = [2dy (1 — t)*] exp =
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The presence of such a physically unnatural solution as part of the fundamental system leads to diver-
gence of the numerical calculation in time as t approaches one. Such difficulties were encountered in problems
analyzed earlier [8, 9] and were bypassed by starting the integration from the point t =1. But this complicates
the problem, since the initial conditions on the function b{t) and its derivatives at the point t =1 are unknown.
This problem is solved as follows. First two independent solutions of the homogeneous equation (2.4) are sought
in the series form (2.6), and by substituting them into (2.4), a system of equations determining the coefficients
¢k is obtained. To solve this system it is sufficient to assign only the values of ¢, and ¢;. For the first of the
solutions sought for the homogeneous equation we take ¢; =1, ¢; =0, and for the second ¢, =0, ¢, =1. Having
determined the next three coefficients using recurrent relations, we can move over a certain small segment 6
from the singular point and enter into a standard procedure of computer integration of the homogeneous equa-
tion.(2.4) up tot =0. The value of § was chosen in successive calculations such that its variation did not affect
the final result.

After the calculation of two linearly independent solutions of the homogeneous equation, a solution of the
inhomogeneous equation was sought in the same way. For this the function f{t) was expanded in a series in
powers of (1 —t), while in the solution sought, which had the form (2.6), the series coefficients ¢, and c; were
taken as zero.

After the three auxiliary calculations described, the general solution of the problem was sought in the _
form of a linear combination of two solutions g; and g, of the homogeneous equation and a particular solution g
of the inhomogeneous equation: b =a;g; + ayg, + &.

The unknown coefficients a; and a, were determined from the first two conditions (2.5) at the point t =0
and the third was used to monitor the accuracy of the solution obtained. As a rule, it was satisfied to within
the fifth place. In the numerical integration of Eq. (2.4) it was found that with an increase in the magnetic Rey-
nolds number u and a decrease in the compressibility of the material (¢ — 0}, the calculation also becomes
unstable in the described procedure for solving the problem backwards in time. In such cases the calculation
procedure became more complicated: Integration was carried out from the pointst = 1 — 6 andt =0 to a cer-
tain internal point of the segment [0, 1 — §], where splicing was done,

The results of calculations of the extreme field strengthening b, are given in Fig. 3. With an increase in
the compressibility and the magnetic Reynolds number, b, increases. For infinitely compressible material
(o — 1), the extreme strengthening coincides with the analytical result of [6], corresponding to field compres-
sion in a plane slot between two conductors, 8, = u/8 + (u/ 7)1/2 + 1. In the case of finite compressibility,

b, is less than g, for the same value of u, and in an incompressible material it is entirely absent.

The growth of the field with time is shown in Fig. 4, where we give the results of calculations for u =
1000 and o =1, 0.75, 0.5, and 0.25 (lines 1-4). It is seen that 99% of the time, the compression is well de-
scribed by a straight line in log—log coordinates, which corresponds to the power law (1.4), allowing only for
convective removal of flux from the compression region. The finite electrical conductivity is felt only at the
last instant of compression, bringing the field strengthening to the final value b,,.

The relative role of diffusional flux losses is small in the initial stages of compression, but it becomes
decisive by the end of compression. This is indicated by the results of calculations of the relative decrease
in the coefficient of field strengthening due to the finite conductivity of the compressed substance, Ab/b =
(8 —h)/b [B(t) and b(t) are the coefficients of field strengthening in the substance for ideal conductivity in the
compressed state and for finite electrical conductivity, taken at a certain timel. The time dependence of this
quantity is shown in Fig. 5 for the same values of u and « as in Fig. 4.
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3. Experimental Results

To determine the influence of the compressibility of the material on the field strengthening and to obtain
magnetic fields in the megagauss range, we set up two series of experiments. The first series was carried out
jointly with K. Nagayama in a laboratory at Kumamoto University (Japan). We used a very compact generator
of a converging cylindrical wave, described in [4], that he developed. As the working substance we used alum-
inum powder with well calibrated grains of a certain size. The compression region consisted of a polyvinyl
chloride plastic cylindrical can with an inside diameter of 44 mm; the fitting for the pressure sensor had an
outside diameter of ~5 mm. A cylindrical tubular charge of plastic explosive was placed outside the can con-
taining the aluminum powder. Using auxiliary charges and spacers of inert substance, simultaneous initiation
along the middle of the main charge was accomplished and a good axisymmetric, converging SW was created.
The time and the readings from the sensors were recorded by an instrument with digital storage, which sim-
plified the further treatment of the results obtained.

The conditions and some results of the experiments are given in Table 1. The tests differed in the grain
size of the aluminum powder and the initial density. In order to compact the fine aluminum powder, in test 2
it had to be wetted with acetone and pressed in this form, bringing its density approximately to the density of
the coarser powder. The test was made after exposing the pressed and wetted powder for about 12 h, resulting
in the evaporation of a considerable amount of acetone. The powder still remained moist immediately hefore
the explosion, however, A decrease in the initial density (transition from test 1 to 3) considerably increased
the degree of field strengthening and hardly affected the recording time. On the other hand, the decrease in«
upon wetting of the material (compare test 2 with tests 3 and 1) shows that the coefficient of field strengthening
decreases catastrophically.

It is interesting to depict the results of these three experiments in log—log coordinates, In (B/By) and
In{(tf - ty) /(ts — t)], where By and t; are the initial field and the time of the start of compression and tf is the
conditional time of arrival of the SW at the axis of the system. If the SW velocity is taken as constant, then
the value of (tf — t;)/(tf — t} equals the ratio of the initial size of the compression region to the size of the re-
gion bounded by the converging SW at the time t; such a construction allows one fo judge the applicabilify of the
assumptions of Sec. 1 to these experiments. Unfortunately, the low accuracy in determining B, and t; from a
recording of the experimental results and a certain arbitrariness in the choice of the value of tf hinder the ex-
ecution of this attractive scheme, while the assumption that the compression velocity is constant seems ex-
tremely beld and can be adopted at all only for a considerable mass of explosive charge and strong stemming,
which occurred, fortunately, in our experiments. With allowance for these reservations, let us consider the
experimental results treated in this way, which are shown in Fig. 6, where the points are experimental readings
while the straight lines are constructed by the method of least squares. The numbers by the lines correspond
to the experiment number. It is seen that the experimental points can be arranged fairly well on the corre-
sponding straight line, and the assumption that the compression velocity and amount of compaction are constant
proves to be not so bad. The results of certain calculations based on these constructions are summarized in
Table 2.

Thus, our experiments showed that the decisive factor for obtaining high magnetic field strengthenings
is the choice of the initial state of the material, while the degree of its compressibility in the transition o the
conducting state is the determining indicator for success of the experiment.

A second series of experiments was carried out at Novosibirsk {10] with the aim of obtaining magnetic
fields in the megagauss range, for which we improved the shock-wave generator described in [3], in which
PAP-1 aluminum powder with an initial density of 0.33 g/cm? was used, as before. The changes introduced
into the generator (Fig. 7) consist in the introduction into it of a copper liner 2 with a slit for the penetration
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TABLE 1

Test . Grain o TField Cc_:mpression
number Material size,im g? om 3 strength- |time,
. ening . lusec
i Powder 100 1,44 3,5 9,1
2 Powder + acetone 10 1,1 2,3 7.4
3 Powder 10 ~0,5 18,9 9,2
TABLE 2
Test :
tumber {a) (sarfia) p/os |0, g/em®  |D, km/sec |p, GPa
1 0,28 0.1 1,4 1,59 C 242 1.9
2 0,18 0,19 1,22 1,35 2,97 1,8
3 0,66 0,22 2,95 1,5 2,39 1,9
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of magnetic flux into the compression region. Besides the liner, the complete assembly contained a charge of
TG 50/50 explosive 1 with a weight of 500 g, the working substance 3, and an inductive sensor 4. The dimen-
sions of the working region were 130 x 130 x 50 mm, The initial magnetic field was produced in the substance
using busbars mounted at the top and bottom, forming a Helmholtz pair of coils. The explosive charge was ini-
tiated at the four corners 5 of the generator over the entire height at once. After the charge is fired, a nearly
cylindrical system of converging SW is organized in the working region (shown by dashed lines in Fig. 7). In
the generator being described, the liner fills several functions at once:

it serves for the more efficient transfer of the explosive energy into the SW;
it permits the use of practically all the magnetic flux created in the working region for compression;

it fills the role of a kind of concentrator of magnetic flux, somewhat increasing the initial field in the
generator.

In the experiments we were able to achieve the following results: The initial field By =40 kG was streng-
thened about 90-fold and reached 3.5 MG. An oscillogram of one of the tests is given in Fig. 8. The field in
the generator is given by both channels, the sensitivities of which differ by a factor of 10. The time markings
are 10 usec.

Estimates show that in the process of compression, the pressure behind the SW front in the powder does
not exceed several gigapascals, while the magnetic pressure is ~50 times higher by the end of the operation
of the generator. Despite this, no peculiarities are observed on the oscillograms indicating a slowing of the
rate of rise of the magnetic field. It seems that the initial magnetic field in the generator can be increased
considerably without significant detriment fo the magnetic field strengthening.

Our experiments also showed that sufficiently precise focusing of the SW onto the sensor, 3 mm in diam-
eter, is accomplished in the generator, since the scatter of the results of several experiments proved to be
small. If one considers that the size of the linear region of compression varies by a factor of about 40 in this
case, it must be acknowledged that effects connected with instability and mixing of the field with the substance,
which complicate experiments with classical generators of the MK-1 type [11], are greatly suppressed in the
generator described.
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The authors see future prospects for the shock-wave method of obtaining megagauss magnetic fields in

the rational choice of the working substance with a low density and a rather high compressibility, as well as

in an increase in the scale of the experiment. On the whole, shock-wave magnetic-cumulation generators of
megagauss magnetic fields represent, in our opinion, a rather simple to build and inexpensive source for phys-
ics experiments.

In conclusion, the authors thank K. Nagayama for making it possible to conduct and use the resuits of the

series of experiments.
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